25 research outputs found

    Intracellular pH Modulates Autophagy and Mitophagy

    Get PDF
    The specific autophagic elimination of mitochondria (mitophagy) plays the role of quality control for this organelle. Deregulation of mitophagy leads to an increased number of damaged mitochondria and triggers cell death. The deterioration of mitophagy has been hypothesized to underlie the pathogenesis of several neurodegenerative diseases, most notably Parkinson disease. Although some of the biochemical and molecular mechanisms of mitochondrial quality control are described in detail, physiological or pathological triggers of mitophagy are still not fully characterized. Here we show that the induction of mitophagy by the mitochondrial uncoupler FCCP is independent of the effect of mitochondrial membrane potential but dependent on acidification of the cytosol by FCCP. The ionophore nigericin also reduces cytosolic pH and induces PINK1/PARKIN-dependent and -independent mitophagy. The increase of intracellular pH with monensin suppresses the effects of FCCP and nigericin on mitochondrial degradation. Thus, a change in intracellular pH is a regulator of mitochondrial quality control

    Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease

    Get PDF
    DJ-1 protein has multiple specific mechanisms to protect dopaminergic neurons against neurodegeneration in Parkinson's disease. Wild type DJ-1 can acts as oxidative stress sensor and as an antioxidant. DJ-1 exhibits the properties of molecular chaperone, protease, glyoxalase, transcriptional regulator that protects mitochondria from oxidative stress. DJ-1 increases the expression of two mitochondrial uncoupling proteins (UCP 4 and UCP5), that decrease mitochondrial membrane potential and leads to the suppression of ROS production, optimizes of a number of mitochondrial functions, and is regarded as protection for the neuronal cell survival. We discuss also the stabilizing interaction of DJ-1 with the mitochondrial Bcl-xL protein, which regulates the activity of (Inositol trisphosphate receptor) IP3R, prevents the cytochrome c release from mitochondria and inhibits the apoptosis activation. Upon oxidative stress DJ-1 is able to regulate various transcription factors including nuclear factor Nrf2, PI3K/PKB, and p53 signal pathways. Stress-activated transcription factor Nrf2 regulates the pathways to protect cells against oxidative stress and metabolic pathways initiating the NADPH and ATP production. DJ-1 induces the Nrf2 dissociation from its inhibitor Keap1 (Kelch-like ECH-associated protein 1), promoting Nrf2 nuclear translocation and binding to antioxidant response elements. DJ-1 is shown to be a co-activator of the transcription factor NF-kB. Under nitrosative stress, DJ-1 may regulate PI3K/PKB signaling through PTEN transnitrosylation, which leads to inhibition of phosphatase activity. DJ-1 has a complex modulating effect on the p53 pathway: one side DJ-1 directly binds to p53 to restore its transcriptional activity and on the other hand DJ-1 can stimulate deacylation and suppress p53 transcriptional activity. The ability of the DJ-1 to induce activation of different transcriptional factors and change redox balance protect neurons against aggregation of α-synuclein and oligomer-induced neurodegeneration

    Interaction of misfolded proteins and mitochondria in neurodegenerative disorders

    Get PDF
    The number of the people affected by neurodegenerative disorders is growing dramatically due to the ageing of population. The major neurodegenerative diseases share some common pathological features including the involvement of mitochondria in the mechanism of pathology and misfolding and the accumulation of abnormally aggregated proteins. Neurotoxicity of aggregated β-amyloid, tau, α-synuclein and huntingtin is linked to the effects of these proteins on mitochondria. All these misfolded aggregates affect mitochondrial energy metabolism by inhibiting diverse mitochondrial complexes and limit ATP availability in neurones. β-Amyloid, tau, α-synuclein and huntingtin are shown to be involved in increased production of reactive oxygen species, which can be generated in mitochondria or can target this organelle. Most of these aggregated proteins are capable of deregulating mitochondrial calcium handling that, in combination with oxidative stress, lead to opening of the mitochondrial permeability transition pore. Despite some of the common features, aggregated β-amyloid, tau, α-synuclein and huntingtin have diverse targets in mitochondria that can partially explain neurotoxic effect of these proteins in different brain regions
    corecore